In this study, ground state properties for some medical radionuclides used widely in medical applications have been investigated using Skyrme-Hartree-Fock (SHF) method. We calculated the proton, neutron and charge density RMS (root-meansquare) radii of some medical radionuclides such as 42K, 45Ca, 81Kr, 81Rb, 82Rb, 85Sr, 110In, 111In, 123Cs, 201TI and 201Pb using the SHF calculations with the Skyrme force parameters. The calculated results are compared with the available experimental values for charge density RMS radii. The proton, neutron, charge and mass density distributions for all nuclei used in this study have also been calculated. The calculated conclusions can be used in estimating nuclear properties of the medical nuclei and for the calculations of pre-equilibrium reactions cross section data for the production of new medical radioisotopes.