Radon gas, which can accumulate indoors in time, emits alpha particles and is directly responsible for the half of the natural radioactivity. Determination of indoor radon concentrations is very important since inhalation of radon and radon daughters in the dwellings with high radon levels has been related with the risk of lung cancer. In this study, indoor radon levels were measured at five buildings (three of which located in the east campus, while the other two are located in the west campus) at the University of Süleyman Demirel, which has been established on an area of approximately 10,000 decares. The measurements were performed in the Faculty of Agriculture, Faculty of Law, Atatürk Sports Hall, School of Engineering and Architecture, Information Processing Centre by using CR-39 nuclear etched track detectors at 92 measurement points for a period of approximately 8 weeks between May and July 2010. The analyses of the detectors revealed that, the average indoor radon concentrations of Engineering and Architecture School, Faculty of Agriculture, Faculty of Law, Atatürk Sports Hall, and the Information Processing Center were 259 Bq/m3, 279 Bq/m3, 265 Bq/m3, 324 Bq/m3 and 173 Bq/m3 respectively. Furthermore, the doses taken by staff and the students due to radon were calculated. It is found that, the annual effective dose equivalents in those five buildings were 2.7 mSv, 2.9 mSv, 2.8 mSv, 3.4 mSv and 1.8 mSv with the same order.