Modulation of wireless (2.45 GHz)-induced oxidative toxicity in laryngotracheal mucosa of rat by melatonin. Aynali G, Naziroğlu M, Çelik Ö, Doğan M, Yarıktaş M, Yasan H.

Author information Abstract

It is well known that oxidative stress induces larynx cancer, although antioxidants induce modulator role on etiology of the cancer. It is well known that electromagnetic radiation (EMR) induces oxidative stress in different cell systems. The aim of this study was to investigate the possible protective role of melatonin on oxidative stress induced by Wi-Fi (2.45 GHz) EMR in laryngotracheal mucosa of rat. For this purpose, 32 male rats were equally categorized into four groups, namely controls, sham controls, EMR-exposed rats, EMR-exposed rats treated with melatonin at a dose of 10 mg/kg/day. Except for the controls and sham controls, the animals were exposed to 2.45 GHz radiation during 60 min/day for 28 days. The lipid peroxidation levels were significantly (p < 0.05) higher in the radiation-exposed groups than in the control and sham control groups. The lipid peroxidation level in the irradiated animals treated with melatonin was significantly (p < 0.01) lower than in those that were only exposed to Wi-Fi radiation. The activity of glutathione peroxidase was lower in the irradiated-only group relative to control and sham control groups but its activity was significantly (p < 0.05) increased in the groups treated with melatonin. The reduced glutathione levels in the mucosa of rat did not change in the four groups. There is an apparent protective effect of melatonin on the Wi-Fi-induced oxidative stress in the laryngotracheal mucosa of rats by inhibition of free radical formation and support of the glutathione peroxidase antioxidant system.